स्थानांतरण - औसत - चिकनी


चिकनी चलती औसत एसएमएमए। चलने वाली औसत मुद्रा बाजारों में प्रतिभागियों द्वारा सर्वाधिक व्यापक रूप से इस्तेमाल किए गए उपकरणों में से हैं। चलती औसत की ताकत, मूल्य की शोर को कम करने की अपनी क्षमता है जो कि अत्यधिक अस्थिर कीमत श्रृंखला को अधिक स्पष्ट रूप से प्रवृत्तियों में विभाजित कर सकती है, जिससे व्यापारियों की अनुमति हो सकती है प्रवृत्ति की ताकत और दिशा का पता लगाने के लिए निम्न संकेतकों का रुझान बनाने के लिए औसत अबाधित मूल्य आंकड़े चलाना और कई अन्य तकनीकी संकेतकों में एक घटक है जिसमें कई अन्य लोगों के बीच एमएसीडी, डेमकार और दिशात्मक आंदोलन प्रणाली शामिल हैं। ऐतिहासिक मूल्यों के बराबर भार गणना में एक निश्चित अवधि का जिक्र करने के बजाय सभी उपलब्ध डेटा श्रृंखला को ध्यान में रखा जाता है यह मौजूदा अवधि की अवधि से एसएमएमए को घटाकर प्राप्त किया जाता है इस परिणाम को कल की चिकनाई चलती औसत को आज के मूविंग औसत देता है। Smoothed मूविंग औसत के लिए पहला मान सरल मूविंग ए के रूप में गणना की जाती है क्वार्टर SMA. SUM1 SUM बंद, एन। दूसरा और बाद में चलने की औसत इस सूत्र के हिसाब से गिना जाता है। एमएमए i एसयूएम 1 एसएमएमए 1 बंद I एन। एसयूएम 1 एन अवधि के लिए समापन कीमतों की कुल राशि है SMMA1 पहले की चिकनी चलती औसत है बार एसएमएमए मैं पहली बार को छोड़कर चालू पट्टी का चिकनी चल औसत है I बंद है मौजूदा समापन मूल्य N है चिकनाई अवधि। चलने की औसत के साथ ताड़ना। औसत औसत प्रवृत्तियों की पहचान करने के लिए आम तौर पर इस्तेमाल की पहचान करने के लिए उपयोग किया जाता है प्रतिरोध स्तर बढ़ते औसत जैसे डब्लूएमए और ईएमए, जो कि हाल के मूल्यों के प्रति अधिक संवेदनशील हैं, वे कीमत के साथ कम अंतराल का अनुभव एसएमए से पहले बंद हो जाएगा, इसलिए वे गतिशील ट्रेडों के लिए अधिक उपयुक्त हैं, जो अल्पावधि मूल्य आंदोलनों के लिए प्रतिक्रियाशील हैं एसएमए जैसे मूविंग एवरेज लंबे समय तक प्रभावी प्रवृत्ति पर अधिक धीमी गति से जानकारी प्रदान करने के लिए धीरे-धीरे आगे बढ़ने के कारण वे देर से संकेत देने के लिए प्रवण हो सकते हैं जिससे व्यापारी को कीमत के चलने के महत्वपूर्ण हिस्सों को याद करना पड़ता है। ओविंग औसत क्रॉसओवर औसत क्रॉसओवर चलते समय एक शब्द लागू होता है जब एक से अधिक चल औसत एक व्यापार संकेत उत्पन्न करने के लिए उपयोग किया जाता है, जहां व्यापारियों का कार्य तब होता है जब कम अवधि वाली औसत औसत लंबी अवधि के चलती औसत को पार करता है। लंबे समय तक चलने वाले औसत स्वर्ण पार से ऊपर एक बियरिश क्रॉसओवर होता है, जहां कम अवधि चलती औसत अवधि लंबी चलती औसत मृत पार से पार होती है। मूल्य क्रॉसओवर एक शब्द लागू होता है जब कोई संकेत उत्पन्न होता है जहां मूल्य चलती औसत बुल्यशी पार करता है जब औसत चलती औसत से ऊपर की कीमत बढ़ जाती है, तो बियरिश संकेत दिए जाते हैं जब चलती औसत क्रॉसओवर ट्रेडों के नीचे की कीमत में सफलता का आनंद लेने की अधिक संभावना होती है जब चलती औसत ढलान व्यापार की दिशा में होते हैं। समर्थन और विरोध मूविंग एवरेज डाउनथ्रेंड में एक अपट्रेंड और प्रतिरोध स्तरों में समर्थन स्तर के रूप में कार्य भी कर सकता है यदि औसत है प्रवृत्तियों के पक्ष में व्यापक रूप से अनुपालन किया जाता है, जो आमतौर पर औसत के आसपास क्लस्टर होते हैं क्योंकि बाज़ार अक्सर भावनाओं से प्रेरित होते हैं और कई खिलाड़ियों के व्यापार जवाबी प्रवृत्तियों से उम्मीद होती है कि इस हद तक औसत का उपयोग सटीक स्तरों के बजाय समर्थन और प्रतिरोध क्षेत्र की पहचान करने के लिए किया जाना चाहिए। औसत व्यापार सिग्नल चलाना.इस पृष्ठ को साझा करें.आप अब व्यापार कैसे शुरू कर सकते हैं.फ्री प्रैक्टिस अकाउंट. यह कैसे हम दुनिया को देखते हैं जो अंतर टीएम बनाता है। जोखिम चेतावनी ट्रेडिंग एफएक्स आपकी पूंजी के लिए जोखिम का उच्च स्तर रखता है और आपको केवल व्यापार करना चाहिए धन के साथ आप खो सकते हैं कृपया हमारे ऑस्ट्रेलियाई उत्पाद प्रकटीकरण वक्तव्य वित्तीय सेवा गाइड और हमारी न्यूजीलैंड उत्पाद प्रकटीकरण विवरण देखें, महिंद्रा एक्सचेंज लिमिटेड के साथ किसी भी लेनदेन में प्रवेश करने का निर्णय लेने से पहले एनजेड पीडीएस एनजेड पीडीएस पूरक दस्तावेज इस साइट पर सूचना और उत्पादों का निर्देशन नहीं किया जाता है। किसी भी देश या अधिकार क्षेत्र में निवासियों के लिए या उपलब्ध है, जहां ऐसे वितरण या उपयोग स्थानीय कानून या विनियमन के विपरीत होंगे MahiFX एक है न्यूज़ीलैंड में शामिल कंपनी जो न्यूज़ीलैंड और ऑस्ट्रेलिया में व्यवसाय करती है यदि आप इन देशों में से किसी एक पर आधारित नहीं हैं, तो यह सुनिश्चित करना आपकी ज़िम्मेदारी है कि आपके अधिकार क्षेत्र में हमारे सेवाओं के प्लेटफॉर्म का उपयोग करना कानूनी है MahiFX ऑस्ट्रेलियाई सिक्योरिटीज और निवेश आयोग ऑस्ट्रेलियाई पंजीकृत निकाय संख्या एआरबीएन 152-535-085 आस्ट्रेलियाई वित्तीय सेवा लाइसेंस एएफएसएल नंबर 414198 और न्यूजीलैंड वित्तीय बाजार प्राधिकरण न्यूजीलैंड बिजनेस नं। एनजेबीस नोज़ 9429031595070 एनजेड वित्तीय सेवा प्रदाता रजिस्टर एफएसपीआर नंबर एफएसपी 1 9 7465.एमएएफएफ़एक्स को ऑस्ट्रेलियाई सिक्योरिटीज एंड इंवेस्टमेंट कमिशन न्यूजीलैंड फाइनेंशियल मार्केट अथॉरिटी। साँस लेना डेटा यादृच्छिक भिन्नता को दूर करता है और प्रवृत्तियों और चक्रीय घटकों को दिखाता है। समय के साथ लिया गया डेटा के संग्रह में अनियमित यादृच्छिक भिन्नता का कोई रूप है यादृच्छिक भिन्नता के कारण प्रभाव को रद्द करने के कम होने के तरीकों उद्योग में तकनीक चौरसाई है इस तकनीक हनीक, जब ठीक से लागू किया जाता है, तो अंतर्निहित प्रवृत्ति, मौसमी और चक्रीय घटकों को और अधिक स्पष्ट रूप से पता चलता है। चौरसाई विधियों के दो अलग-अलग समूह हैं। औसत तरीके विधिवत चिकनाई विधि। तरीकों, जैसे कि सभी पिछले डेटा की साधारण औसत। एक गोदाम के प्रबंधक को यह जानना चाहता है कि एक सामान्य आपूर्तिकर्ता 1000 डॉलर इकाइयों में कितना उद्धार करता है वह 12 आपूर्तिकर्ताओं का एक नमूना लेता है, बेतरतीब ढंग से, निम्न परिणाम प्राप्त कर रहा है। या आंकड़ों की औसत 10 प्रबंधक एक विशिष्ट आपूर्तिकर्ता के व्यय के अनुमान के रूप में इसका इस्तेमाल करने का निर्णय लेता है। यह एक अच्छा या बुरा अनुमान है। एमएएन चुकता त्रुटि एक आदर्श तरीका है यह निर्णय करने का एक तरीका है। हम मतलब स्क्वायर त्रुटि। गलती से सही राशि ने अनुमानित राशि को घटा दिया है। त्रुटि स्क्वायर ऊपर की त्रुटि है, स्क्वेर्ड। एसएसई चुकता त्रुटियों का योग है। एमएसई स्क्वेर्ड त्रुटियों का मतलब है। उदाहरण के लिए एमएसई परिणाम। sults त्रुटि और स्क्वायर त्रुटियां हैं। अनुमान 10. प्रश्न उठता है कि हम आय का पूर्वानुमान करने के लिए इसका इस्तेमाल कर सकते हैं यदि हमें एक प्रवृत्ति पर संदेह है, तो नीचे दिए गए ग्राफ़ पर एक नतीजा स्पष्ट रूप से दिखाया गया है कि हमें ऐसा नहीं करना चाहिए। औसत सभी अतीत टिप्पणियों का समान रूप से वजन होता है। सारांश, हम यह कहते हैं कि। औसत अतीत या अतीत के सभी टिप्पणियों का मतलब केवल भविष्यवाणी के लिए एक उपयोगी अनुमान है, जब कोई प्रवृत्ति नहीं है। यदि रुझान हैं, तो अलग-अलग अनुमानों का उपयोग करें जो कि प्रवृत्ति को खाते में लेते हैं। औसत के अनुसार सभी पिछले अवलोकनों का उतना ही वजन होता है उदाहरण के मूल्य 3, 4, 5 के औसत 4 हमें पता है, निश्चित रूप से, सभी मानों को जोड़कर और योगों की संख्या से योग को विभाजित करके औसतन गणना की जाती है। प्रत्येक मूल्य जोड़कर औसत की गणना करने का एक और तरीका है मूल्यों की संख्या से विभाजित, या 3 3 4 3 5 3 1 1 3333 1 6667 4. मल्टीप्लेयर 1 3 को वजन सामान्य कहा जाता है। बार फ्राक राशि छोड़ दिया frac सही x1 left frac right x2,,, left frac right xn। बाएं frac सही वजन हैं और, ज़ाहिर है, वे 1.Moving औसत और घातीय चिकनाई मॉडल के लिए योग करते हैं। आगे बढ़ने में पहला कदम के रूप में माध्य मॉडल, यादृच्छिक चलने वाले मॉडल, और रैखिक प्रवृत्ति मॉडल, गैर-मौसमी पैटर्न और प्रवृत्तियों को एक चल-औसत या चौरसाई मॉडल का उपयोग करके एक्सट्रपोलैटेड किया जा सकता है औसत और चौरसाई मॉडल के पीछे मूल धारणा यह है कि समय श्रृंखला स्थानीय रूप से स्थिर होती है, हम मतलब के वर्तमान मूल्य का अनुमान लगाने के लिए एक चलती स्थानीय औसत लेते हैं और फिर इसका इस्तेमाल निकट भविष्य के पूर्वानुमान के रूप में किया जा सकता है, यह औसत मॉडल और यादृच्छिक-चलना-बिना-बहाव-मॉडल के बीच समझौता के रूप में माना जा सकता है एक ही रणनीति स्थानीय प्रवृत्ति का अनुमान और एक्सट्रपॉल करने के लिए इस्तेमाल किया जा सकता है एक चलती औसत को अक्सर मूल श्रृंखला का एक चिकना संस्करण कहा जाता है क्योंकि अल्पकालिक औसतन को मूल श्रृंखला में बाधाओं को चौरसाई करने का असर होता है। चलती औसत की चौड़ाई की चौरसाई की डिग्री, हम औसत और यादृच्छिक चलने के मॉडल के प्रदर्शन के बीच किसी तरह के इष्टतम संतुलन को हड़ताल करने की आशा कर सकते हैं सरलतम औसत मॉडल है। सरल समान भारित मूवमेंट औसत। समय के समय वाई 1 का मूल्य, जो कि समय पर बना है, सबसे हाल के एम अवलोकनों के सरल औसत के बराबर है। यहां और कहीं और मैं Y-hat का प्रतीक का उपयोग समय के श्रृंखला के पूर्वानुमान के लिए खड़े होंगे, जो किसी दिए गए मॉडल से सबसे पहले की पूर्व तारीख को बनाया गया था। यह औसत अवधि टी-मी 1 2 पर केंद्रित है, जिसका अर्थ है कि अनुमान स्थानीय मतलब के बारे में मी 1 2 अवधि से स्थानीय मतलब के सही मूल्य के पीछे की ओर झेलना होगा, इसलिए हम कहते हैं कि सरल चलती औसत में डेटा की औसत आयु एम 1 2 अवधि के लिए सापेक्ष है जिसके लिए पूर्वानुमान की गणना की जाती है यह उस समय की मात्रा है जिसके द्वारा पूर्वानुमान डेटा में बिंदुओं को मोड़ के पीछे पीछे की ओर झेलता है उदाहरण के लिए, यदि आप पिछले 5 मानों की औसतता रखते हैं, तो मोड़ करने का जवाब देने के लिए पूर्वानुमान के बारे में 3 अवधि देर हो जाएगी ध्यान दें कि यदि मी 1, सरल चलती औसत एसएमए मॉडल विकास के बिना यादृच्छिक चलने के मॉडल के बराबर है यदि अनुमानित अवधि की तुलना में मी बहुत बड़ी है, तो एसएमए मॉडल औसत मॉडल के बराबर है जैसा कि एक पूर्वानुमान मॉडल के किसी भी पैरामीटर के साथ, यह प्रथागत है के मूल्य को समायोजित करने के लिए डेटा के लिए सबसे अच्छा फिट प्राप्त करने के लिए n आदेश, अर्थात् औसत पर छोटी सी पूर्वानुमान त्रुटियां। यहां एक ऐसी श्रृंखला का उदाहरण है जो धीरे-धीरे अलग-अलग साधनों के बीच यादृच्छिक उतार-चढ़ाव प्रदर्शित करता है, पहले इसे एक यादृच्छिक चलने से फिट करने का प्रयास करें मॉडल, जो कि 1 अवधि के साधारण चलती औसत के बराबर है। यादृच्छिक चलने वाला मॉडल श्रृंखला में परिवर्तन के लिए बहुत जल्दी प्रतिक्रिया करता है, लेकिन ऐसा करने से डेटा में बहुत अधिक शोर होता है, यादृच्छिक उतार-चढ़ाव के साथ-साथ संकेत स्थानीय भी होता है इसका मतलब यह है कि यदि हम इसके बजाय 5 शब्दों की एक सरल चलती औसत की कोशिश करते हैं, तो हमें एक चिकनी दिखने वाले पूर्वानुमान प्राप्त होते हैं। 5-अवधि की सरल चलती औसत उपज इस मामले में यादृच्छिक चलने की मॉडल की तुलना में काफी छोटी त्रुटियां होती है। पूर्वानुमान 3 5 1 2 है, इसलिए यह लगभग तीन अवधियों तक मोड़ के पीछे की ओर झुकता है उदाहरण के लिए, 21 साल की अवधि में एक मंदी हुई है, लेकिन कई सालों बाद पूर्वानुमान नहीं पड़ता। एसएमए आधुनिक से भविष्य के पूर्वानुमान एल एक क्षैतिज सीधी रेखा है, जैसे कि यादृच्छिक चलने के मॉडल में, एसएमए मॉडल मानता है कि डेटा में कोई प्रवृत्ति नहीं है, हालांकि, यादृच्छिक चलने वाले मॉडल से होने वाले अनुमान केवल पिछले मान के मान के बराबर हैं, ये अनुमान एसएमए मॉडल हालिया मूल्यों के भारित औसत के बराबर हैं। स्थिर गति से चलने वाले औसत के दीर्घकालिक पूर्वानुमान के लिए सांख्यिकीग्राही द्वारा गणना की जाने वाली आत्मविश्वास सीमा भविष्यवाणी की क्षितिज बढ़ने के रूप में व्यापक नहीं होती है यह स्पष्ट रूप से सही नहीं है दुर्भाग्य से, कोई अंतर्निहित नहीं है सांख्यिकीय सिद्धांत जो हमें बताता है कि इस मॉडल के लिए आत्मविश्वास के अंतराल को कैसे चौड़ा करना चाहिए, हालांकि, लंबे समय-क्षिति पूर्वानुमान के लिए आत्मविश्वास सीमा के अनुभवजनित अनुमानों की गणना करना बहुत मुश्किल नहीं है उदाहरण के लिए, आप एक स्प्रैडशीट सेट कर सकते हैं जिसमें SMA मॉडल ऐतिहासिक डेटा नमूने के भीतर 2 चरणों के आगे, 3 कदम आगे, आदि का पूर्वानुमान करने के लिए उपयोग किया जाएगा, फिर आप प्रत्येक पूर्वानुमान में त्रुटियों के नमूना मानक विचलन की गणना कर सकते हैं। और फिर, उचित मानक विचलन के गुणकों को जोड़कर और घटाना करके लंबे समय तक पूर्वानुमान के लिए आत्मविश्वास अंतराल का निर्माण करते हैं। यदि हम 9-अवधि की सरल चलती औसत की कोशिश करते हैं, तो हमें चिकना पूर्वानुमान और अधिक प्रभाव पड़ता है। औसत आयु अब 5 अवधियों 9 1 2 यदि हम 1 9-अवधि की चलती औसत लेते हैं, तो औसतन उम्र बढ़कर 10 हो जाती है। नॉटिस, वास्तव में, पूर्वानुमान अब लगभग 10 अवधियों तक अंक बंटने के पीछे चल रहे हैं। किस श्रृंखला में चौरसाई इस श्रृंखला के लिए सर्वश्रेष्ठ है यहां एक ऐसी तालिका है जो उनकी त्रुटि आंकड़े की तुलना करती है, जिसमें 3-टर्म औसत भी शामिल है। मॉडेल सी, 5-अवधि की चलती औसत, 3-अवधि और 9-अवधि की औसत पर छोटे मार्जिन द्वारा आरएमएसई के न्यूनतम मूल्य की पैदावार करता है, और उनके अन्य आँकड़े लगभग समान हैं, बहुत ही इसी तरह के त्रुटि आंकड़ों वाले मॉडल के बीच, हम यह चुन सकते हैं कि हम भविष्य में कुछ अधिक प्रतिक्रियाशीलता या थोड़ी अधिक चिकनाई पसंद करेंगे या नहीं। पृष्ठ के शीर्ष पर लौटें। ब्राउन सरल एक्स्पेंन्नेली चतुराई का तेजी से भारित औसत चलती है। ऊपर वर्णित सरल चलती औसत मॉडल में अवांछनीय संपत्ति है जो पिछली कश्मीर टिप्पणियों को समान रूप से मानती है और सभी पूर्ववर्ती टिप्पणियों को पूरी तरह से अनदेखी करती है, तीव्रता से, पिछले डेटा को अधिक धीरे-धीरे फैशन में छूट दी जानी चाहिए - उदाहरण के लिए, सबसे हाल का अवलोकन होना चाहिए 2 सबसे हालिया से थोड़ा अधिक वजन प्राप्त करें, और 2 सबसे हालिया को हाल ही के तीसरे से थोड़ा अधिक वजन लेना चाहिए, और इसी पर सरल घातीय चिकनाई एसईएस मॉडल इस को पूरा करता है। एक चिकनाई निरंतर एक संख्या 0 और 1 के बीच दर्शाती है मॉडल को लिखने का एक तरीका एक श्रृंखला एल को परिभाषित करना है जो वर्तमान स्तर का प्रतिनिधित्व करता है, यानी स्थानीय औसत मूल्य का मानना ​​है जो आंकड़ों से वर्तमान तक का अनुमान है। समय पर एल के मूल्य को इस तरह के अपने पिछले मूल्य से पुनरावर्ती रूप से गिना जाता है। इस प्रकार, वर्तमान मस्तिष्क का मूल्य पिछले चिकना मूल्य और वर्तमान अवलोकन के बीच एक प्रक्षेप होता है, जहां सबसे अधिक के लिए इंटरपोलेटेड मान की निकटता को नियंत्रित करता है प्रतिशत अवलोकन अगली अवधि के लिए पूर्वानुमान केवल मौजूदा मसौदा मूल्य है। ठीक है, हम अगले पूर्वानुमान और पिछले टिप्पणियों के संदर्भ में सीधे अगले पूर्वानुमान व्यक्त कर सकते हैं, निम्नलिखित समकक्ष संस्करणों में से किसी में पहले संस्करण में, पूर्वानुमान एक प्रक्षेप है पिछले पूर्वानुमान और पिछले प्रेक्षण के बीच। दूसरे संस्करण में, अगले पूर्वानुमान को पिछले त्रुटि की दिशा में पिछले पूर्वानुमान को एक आंशिक राशि से समायोजित करके प्राप्त किया जाता है। समय पर दिया गया त्रुटि, तीसरे संस्करण में, पूर्वानुमान एक है डिस्काउंट कारक के साथ तेजी से भारित अर्थात् रियायती चलती औसत 1. भविष्यवाणी के फार्मूले के प्रक्षेपण संस्करण का प्रयोग सरलतम है यदि आप एक स्प्रेडशीट पर मॉडल को लागू कर रहे हैं, यह एक एकल कक्ष में फिट है और इसमें सेल के संदर्भ में पिछले पूर्वानुमान, पिछले अवलोकन और सेल जहां मूल्य का संचय किया जाता है। नोट करें कि यदि 1, एसईएस मॉडल एक यादृच्छिक चलने वाले मॉडल के समान है हटे की वृद्धि यदि 0, एसईएस मॉडल औसत मॉडल के समतुल्य है, यह मानते हुए कि पहला सौम्य मूल्य मतलब पेज के शीर्ष पर लौटने के बराबर सेट है। सरल-घातांक-चौरसाई पूर्वानुमान में डेटा की औसत आयु 1 रिश्तेदार है इस अवधि के लिए पूर्वानुमान की गणना की जाती है यह स्पष्ट नहीं माना जाता है, लेकिन यह एक अनंत श्रृंखला का मूल्यांकन करके आसानी से दिखाया जा सकता है इसलिए, सरल चलती औसत पूर्वानुमान लगभग 1 अवधियों तक अंक बदलने से पीछे की ओर जाता है उदाहरण के लिए, जब 0 5 अंतराल 2 अवधि है जब 0 2 में 5 अवधियां होती हैं, जब 0 1 अंतराल 10 अवधियां होती है, और इसी तरह। किसी दिए गए औसत आयु के लिए यानी अंतराल की मात्रा, सरल घातीय चिकनाई एसईएस पूर्वानुमान सरल चलती से कुछ बेहतर है औसत एसएमए पूर्वानुमान क्योंकि यह हाल के अवलोकन पर अपेक्षाकृत अधिक वजन रखता है - यह हाल के दिनों में होने वाले परिवर्तनों के लिए थोड़ा अधिक उत्तरदायी है उदाहरण के लिए, 9 शब्दों के साथ एक एसएमए मॉडल और 0 2 के साथ एक एसईएस मॉडल दोनों का औसत आयु है दा के लिए 5 का उनके पूर्वानुमान में टा, लेकिन एसईएस मॉडल एसएमए मॉडल से पिछले 3 मानों पर और अधिक वजन डालता है और साथ ही यह चार्ट पूरी तरह से 9 बार पुरानी है, जैसा कि इस चार्ट में दिखाया गया है। इसके अलावा एक अन्य महत्वपूर्ण लाभ एसएमए मॉडल पर एसईएस मॉडल यह है कि एसईएस मॉडल एक चिकनाई पैरामीटर का उपयोग करता है जो निरंतर चर होता है, इसलिए यह आसानी से एक सॉल्वर एल्गोरिथ्म का उपयोग करके अनुकूलित किया जा सकता है जो कि चुकता त्रुटि को कम करता है इस श्रृंखला के एसईएस मॉडल में इष्टतम मूल्य निकलता है जैसा कि यहां दिखाया गया है, 0 0 9 61 होना। इस पूर्वानुमान में आंकड़ों की औसत आयु 1 0 2961 3 4 अवधि है, जो कि 6-अवधि की सरल चलती औसत के समान है। एसईएस मॉडल से दीर्घावधि पूर्वानुमान एसएमए मॉडल के रूप में एक क्षैतिज सीधी रेखा और विकास के बिना यादृच्छिक चलने वाला मॉडल हालांकि, ध्यान दें कि Statgraphics द्वारा गणना किए गए आत्मविश्वास अंतराल अब एक उचित दिखने वाले फैशन में अलग हो जाते हैं, और यह कि रैंड के लिए आत्मविश्वास अंतराल की तुलना में काफी संकरा है ओम वॉली मॉडल एसईएस मॉडल मानता है कि श्रृंखला यादृच्छिक चलने की मॉडल की तुलना में कुछ अधिक पूर्वानुमानित है। एक एसईएस मॉडल वास्तव में एक एआरआईएए मॉडल का विशेष मामला है, इसलिए एआरआईएए मॉडल के सांख्यिकीय सिद्धांत के लिए आत्मविश्वास अंतराल की गणना के लिए एक ठोस आधार प्रदान करता है। एसईएस मॉडल विशेष रूप से, एक एसईएस मॉडल एक गैर-मौसमी अंतर, एक एमए 1 शब्द के साथ एक एआरआईएए मॉडल है, और कोई स्थिर शब्द नहीं है जिसे अन्यथा एआरआईएएमए 0,1,1 मॉडल के रूप में जाना जाता है, निरंतर बिना एआरएमए मॉडल में एमए 1 गुणांक एसईएस मॉडल में मात्रा 1- उदाहरण के लिए, यदि आप यहां विश्लेषण किए गए श्रृंखला के लिए निरंतर बिना एआरआईएएमए 0,1,1 मॉडल को फिट करते हैं, तो अनुमानित एमए 1 गुणांक 0 7029 हो जाता है, जो लगभग एक शून्य से 0 9 61 है यह एक गैर-शून्य निरंतर रेखीय प्रवृत्ति को एसईएस मॉडल में शामिल करने के लिए संभव है, ऐसा करने के लिए केवल एक नॉनसैसोनल अंतर के साथ एक एआरआईएएमए मॉडल को निर्दिष्ट करें और एक एमए 1 शब्द निरंतर के साथ, अर्थात् एआरआईएएमए 0,1,1 मॉडल निरंतर के साथ दीर्घकालिक पूर्वानुमान होगा तो एक प्रवृत्ति है जो औसत अनुमान के हिसाब से औसत प्रवृत्ति के बराबर है आप इसे मौसमी समायोजन के साथ संयोजन में नहीं कर सकते, क्योंकि मॉड्यूल प्रकार को एआरआईए में सेट किया जाता है, जब मौसमी समायोजन विकल्प अक्षम हो जाते हैं, फिर भी, आप लगातार लंबे समय तक जोड़ सकते हैं - फ़ीडिंग की प्रक्रिया में मुद्रास्फ़ीति समायोजन विकल्प का उपयोग करके या बिना मौसमी समायोजन के साथ एक सरल घातीय चिकनाई मॉडल के लिए मानक घातीय प्रवृत्ति उचित अवधि में औसत मुद्रास्फीति प्रतिशत वृद्धि दर के अनुमान के अनुसार एक रेखीय प्रवृत्ति मॉडल में ढलान गुणांक के रूप में अनुमान लगाया जा सकता है प्राकृतिक लॉगरिथम परिवर्तन के साथ संयोजन, या यह अन्य, स्वतंत्र लंबी अवधि के विकास की संभावनाओं से संबंधित जानकारी पर आधारित हो सकता है पृष्ठ के शीर्ष पर लौटें। ब्रायन रैखिक यानी दोहरे घातीय चिकनाई। एसएमए मॉडल और एसईएस मॉडल मानते हैं कि इसमें कोई प्रवृत्ति नहीं है डेटा में किसी भी तरह का डेटा आमतौर पर ठीक है या कम से कम नहीं-बहुत-बुरा 1-कदम-आगे पूर्वानुमान के लिए जब डेटा अपेक्षाकृत नहीं है sy, और उन्हें एक निरंतर रेखीय प्रवृत्ति को शामिल करने के लिए संशोधित किया जा सकता है, जैसा कि ऊपर दिखाया गया है, अल्प अवधि के रुझान के बारे में यदि कोई श्रृंखला वृद्धि की एक अलग दर या एक चक्रीय पैटर्न जो शोर के खिलाफ स्पष्ट रूप से खड़ा है, और अगर एक से अधिक अवधि के पूर्वानुमान के बाद, एक स्थानीय प्रवृत्ति का अनुमान भी एक मुद्दा हो सकता है एक सरल घातीय चिकनाई मॉडल को एक रेखीय घातीय चिकनाई लेस मॉडल प्राप्त करने के लिए सामान्यीकृत किया जा सकता है जो दोनों स्तर और प्रवृत्ति के स्थानीय अनुमानों की गणना करता है। सरलतम समय-भिन्न प्रवृत्ति मॉडल ब्राउन की रेखीय घातीय चौरसाई मॉडल है, जो दो अलग-अलग चिकने श्रृंखला का उपयोग करता है जो समय के विभिन्न बिंदुओं पर केन्द्रित होते हैं पूर्वानुमान का सूत्र दो केंद्रों के माध्यम से एक रेखा के एक्सट्रपलेशन पर आधारित होता है इस मॉडल के एक और अधिक परिष्कृत संस्करण, होल्ट एस ब्राउन की रैखिक घातीय चौरसाई मॉडल के बीजीय रूप नीचे दिए गए हैं, जैसे कि सरल घातीय चिकनाई मॉडल की, कई अलग-अलग में व्यक्त किया जा सकता है लेकिन ई क्वॉलिटी फॉर्म इस मॉडल का मानक रूप आमतौर पर निम्नलिखित रूप में व्यक्त किया जाता है: चलो एस श्रृंखला को साधारण घातांक को चौरसाई करने से प्राप्त एकल-सुगम श्रृंखला को दर्शाती है, जो कि अवधि एस पर एस का मूल्य दिया जाता है। स्मरण करो कि, सरल घातीय चिकनाई के तहत, यह अवधि के दौरान वाई के लिए पूर्वानुमान होगा 1 फिर, एस द्विगुणित-सरल श्रृंखला को दर्शाता है जो श्रृंखला को समान रूप से सरल घातीय चिकनाई का उपयोग करके प्राप्त किया जाता है। अंत में, किसी भी वाई के लिए पूर्वानुमान कश्मीर 1 द्वारा दिया जाता है। यह पैदावार ई 1 0 या तो थोड़ा सा धोखा देती है, और पहले पूर्वानुमान को वास्तविक पहले अवलोकन के बराबर और दो 2 वाई 2 वाई 1 के बाद दें, इसके बाद के ऊपर के समीकरण का उपयोग करके भविष्यवाणियां उत्पन्न होती हैं एस और एस पर आधारित सूत्र के रूप में यदि एस 1 एस 1 वाई 1 का उपयोग करना शुरू किया गया था तो मॉडल का यह संस्करण अगले पृष्ठ पर उपयोग किया जाता है जो कि मौसमी समायोजन के साथ घातीय चौरसाई का संयोजन दिखाता है। हल्का रैखिक घातीय चिकनाई। ब्राउन एस लेस मॉडल हाल के आंकड़ों को चौरसाई करके स्तर और प्रवृत्ति के स्थानीय अनुमानों की गणना करता है, लेकिन तथ्य यह है कि यह एक चिकनाई पैरामीटर के साथ करता है, डेटा पैटर्न पर एक बाधा रखता है जो इसे स्तर में फिट करने में सक्षम है और प्रवृत्ति को अलग-अलग करने की अनुमति नहीं है पर स्वतंत्र दरों होल्ट एसईईएस मॉडल दो चिकनाई स्थिरांक, स्तर के लिए एक और प्रवृत्ति के लिए एक के साथ इस मुद्दे को संबोधित करता है, ब्राउन के मॉडल के रूप में किसी भी समय टी के अनुसार स्थानीय स्तर का एल टी अनुमान है और अनुमान टी स्थानीय प्रवृत्तियों में से इन्हें समय-समय पर वाई के मूल्य से मनाया जाता है और स्तर के पिछले अनुमान और दो समीकरणों के अनुसार अनुमान लगाया जाता है जो उन्हें अलग-अलग घातीय टुकड़ों को अलग से लागू करते हैं। यदि समय पर अनुमानित स्तर और प्रवृत्ति टी -1 क्रमशः एल टी 1 और टी टी -1, तो वाई टी के लिए पूर्वानुमान जो टी -1 पर बना होता है एल टी -1 टी टी -1 के बराबर होता है, जब वास्तविक मूल्य मनाया जाता है, तो अद्यतन अनुमान स्तर को वाई टी और उसके भविष्यवाणी, एल टी -1 टी टी -1 के बीच में अंतर करके और 1 के भार का उपयोग करके फिर से गणना की जाती है। अनुमानित स्तर में परिवर्तन, अर्थात् एल टी एल टी 1 को एक शोर माप के रूप में व्याख्या किया जा सकता है समय पर रुझान प्रवृत्ति के अद्यतन अनुमान को फिर से एल के बीच interpolating द्वारा recursively गणना है टी एल टी 1 और प्रवृत्ति का पिछला अनुमान, टी टी -1 का वजन और 1 का उपयोग करना। प्रवृत्ति-चौरसाई स्थिरता की व्याख्या स्तर-चौरसाई के समान मॉडल के समान होती है, जो मानते हैं कि प्रवृत्ति में परिवर्तन केवल समय के साथ ही बहुत धीरे-धीरे, जबकि बड़े मॉडल के साथ यह मानता है कि यह और तेज़ी से बदल रहा है एक मॉडल का मानना ​​है कि दूर के भविष्य में बहुत अनिश्चितता है, क्योंकि एक से अधिक अवधि की भविष्यवाणी करते समय प्रवृत्ति अनुमान में त्रुटियां काफी महत्वपूर्ण हो जाती हैं। पृष्ठ का। चौरसाई स्थिरांक और 1-कदम-आगे पूर्वानुमानों की औसत स्क्वायर त्रुटि को कम करके सामान्य तरीके से अनुमान लगाया जा सकता है जब यह स्टैटाग्राफिक्स में किया जाता है, तो इसका अनुमान लगाया जाता है कि 0 3048 और 0 008 बहुत कम मूल्य इसका मतलब यह है कि मॉडल में एक अवधि से लेकर दूसरे तक की प्रवृत्ति में बहुत कम बदलाव होता है, इसलिए मूल रूप से यह मॉडल लंबी अवधि के रुझान का अनुमान लगाने का प्रयास कर रहा है, जो अनुमानित आंकड़ों की औसत आयु के विचार के साथ सादृश्य है। वह श्रृंखला का स्थानीय स्तर, स्थानीय प्रवृत्ति का आकलन करने के लिए उपयोग की जाने वाली डेटा की औसत आयु 1 के आनुपातिक है, हालांकि इसके ठीक उसी के बराबर नहीं है इस मामले में यह 1 0 006 125 हो सकता है यह बहुत सटीक संख्या है क्योंकि अनुमान के शुद्धता के रूप में वास्तव में 3 दशमलव स्थान वास्तव में नहीं हैं, लेकिन यह 100 के नमूने के आकार के समान परिमाण के समान सामान्य क्रम का है, इसलिए यह मॉडल प्रवृत्ति का अनुमान लगाने में काफी इतिहास का अनुमान लगा रहा है। नीचे दिखाया गया है कि एलईएस मॉडल एसईएस प्रवृत्ति मॉडल में अनुमानित निरंतर प्रवृत्ति की तुलना में श्रृंखला के अंत में एक थोड़ा बड़ा स्थानीय प्रवृत्ति का अनुमान भी करता है, अनुमानित मूल्य एसईएस मॉडल के साथ या प्रवृत्ति के बिना फिटिंग द्वारा प्राप्त होने वाले लगभग समान है , तो यह लगभग एक ही मॉडल है.अब, ये एक मॉडल के लिए उचित पूर्वानुमान की तरह दिखते हैं जो कि स्थानीय प्रवृत्ति का आकलन करने वाला है यदि आप इस प्लॉट को नजरअंदाज करते हैं, ऐसा लगता है जैसे स्थानीय प्रवृत्ति निम्न के अंत में बदल गई है श्रृंखला क्यू पर हुआ है इस मॉडल के मापदंडों का अनुमान लगाया गया है कि 1-कदम-आगे पूर्वानुमान की चुकता त्रुटि को कम करके, लंबी अवधि के पूर्वानुमान नहीं, इस मामले में प्रवृत्ति बहुत अधिक अंतर नहीं करती है यदि आप सभी को देख रहे हैं 1 - छोटे-आगे की त्रुटियां, आप 10 या 20 की अवधि के ऊपर रुझानों की बड़ी तस्वीर नहीं देख रहे हैं ताकि डेटा के आंखों के एक्सट्रपलेशन के साथ इस मॉडल को और अधिक प्राप्त करने के लिए, हम मैन्युअल रूप से रुझान-चिकनाई स्थिरता समायोजित कर सकते हैं ताकि यह उदाहरण के लिए, यदि हम 0 1 सेट करना चुनते हैं, तो स्थानीय प्रवृत्ति का आकलन करने में उपयोग की जाने वाली डेटा की औसत आयु 10 अवधि है, जिसका मतलब है कि हम उस पिछले 20 अवधि या उससे अधिक की प्रवृत्ति को औसत कर रहे हैं यहां बताया गया है कि अगर भविष्य की साजिश लगती है तो हम 0 1 को रखते हुए 0 1 सेट करते हैं, लेकिन यह इस श्रृंखला के लिए सहज रूप से उचित लगता है, हालांकि भविष्य में इस प्रवृत्ति को 10 से अधिक अवधि के एक्सट्रपलेशन के लिए संभवतः खतरनाक है। त्रुटि आंकड़ों के बारे में यहां बताया गया है एक मॉडल तुलना एफ या उपरोक्त दो मॉडल के साथ ही तीन एसईएस मॉडल एसईएस मॉडल का इष्टतम मूल्य लगभग 3 है, लेकिन इसी तरह के परिणाम थोड़ा अधिक या कम प्रतिक्रिया के साथ क्रमशः 0 5 और 0 से प्राप्त होते हैं। एक होल्ट रेखीय विस्तार चौरसाई अल्फा 0 3048 और बीटा 0 008 के साथ। बी होल्ट की रैखिक विस्तार एलएफए 0 और बीटा 0 के साथ चौरसाई करना 1. सी अल्फा के साथ सरल घातीय चौरसाई 0 5. डी अल्फा के साथ सरल घातीय चौरसाई 0 3. ई अल्फा के साथ आसान घातीय चिकनाई 0 2 । उनका आंकड़ा लगभग समान है, इसलिए हम वास्तव में 1-कदम-आगे पूर्वानुमान नमूने के आधार पर पूर्वानुमान के आधार पर विकल्प नहीं बना सकते हैं, हमें अन्य विचारों पर पीछे पड़ना होगा यदि हम दृढ़ता से मानते हैं कि यह मौजूदा आधार पर समझ में आता है पिछले 20 सालों में जो कुछ हुआ है, उसके बारे में रुझान का अनुमान है, हम 0 3 और 0 1 के साथ एलईएस मॉडल के लिए एक केस बना सकते हैं यदि हम अज्ञात होना चाहते हैं कि क्या स्थानीय प्रवृत्ति है, तो एसईएस मॉडल में से एक समझाने के लिए आसान होगा और अधिक मिडल भी देंगे अगले 5 या 10 अवधि के लिए ई-ऑफ-द-रोड पूर्वानुमान पृष्ठ के शीर्ष पर लौटें। प्रवृत्ति-एक्सट्रपलेशन का किस प्रकार का सबसे अच्छा क्षैतिज या रैखिक अनुभवजन्य साक्ष्य बताता है कि यदि मुद्रास्फीति के लिए यदि आवश्यक हो तो डेटा पहले से समायोजित हो गया है, तो यह भविष्य के रुझानों में बहुत दूर अल्पकालिक रैखिक प्रवृत्तियों को एक्सट्रपोल करने के लिए अविवेकपूर्ण हो सकता है, जो कि आज के दिनों में स्पष्ट हो सकता है कि उत्पाद अप्रचलन, बढ़ती प्रतिस्पर्धा और उद्योग में चक्रीय गिरावट या उतार-चढ़ाव जैसे विभिन्न कारणों से भविष्य में सुस्ती हो सकती है इस कारण से, सरल घातीय चूरा लगाना अक्सर अपेक्षाकृत अपेक्षाकृत बेहतर प्रदर्शन करती है, अन्यथा इसकी उम्मीद की जा सकती है, इसके भोलेदार क्षैतिज प्रवृत्ति एक्सट्रपलेशन के बावजूद रैखिक घातीय चिकनाई मॉडल के ढेलेदार प्रवृत्ति संशोधनों को भी अक्सर प्रवृत्ति में प्रवृत्त प्रवृत्तियों में रूढ़िवाद की एक नोट पेश करने के लिए इस्तेमाल किया जाता है लेस मॉडल को एक एआरआईएएमए मॉडल के विशेष मामले के रूप में लागू किया जा सकता है, विशेष रूप से, एआरआईएआईए 1,1,2 मॉडल। विश्वास के अंतराल की गणना करना संभव है डीआरडीएम दीर्घकालिक पूर्वानुमान, जो एआरआईएए मॉडल के विशेष मामलों के रूप में विचार करते हैं, उन पर विचार करके, एआरआईएए मॉडल के विशेष मामलों पर विचार करके, सभी सॉफ्टवेयर इन मॉडलों के लिए विश्वास अंतराल की गणना नहीं करते हैं, विश्वास के अंतराल की चौड़ाई मैं मॉडल के आरएमएस त्रुटि पर निर्भर करता हूं, ii प्रकार सरल या रैखिक चौरसाई के चौरसाई स्थिरांक के मूल्य एस और iv आप पूर्वानुमान कर रहे हैं आगे की अवधि की संख्या सामान्य रूप में, अंतराल एसईएस मॉडल में बड़ा हो जाता है के रूप में तेजी से बाहर फैल गया और वे बहुत तेजी से फैल जब रैखिक के बजाय सरल चौरसाई का प्रयोग किया जाता है इस विषय पर नोट्स के एआरआईएए मॉडल खंड में और भी चर्चा की गई है पृष्ठ के शीर्ष पर लौटें

Comments